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Abstrac t  

X-ray results are presented on the crystallographic 
parameters in the basal (ab) plane and the short- 
range-order diffuse scattering from intercalated silver 
atoms in disordered stage-2 Ag0.18TiS 2 at room 
temperature. The silver atoms in the intercalated plane 
occupy the octahedral sites and the in-plane tempera- 
ture parameter of the silver atoms has a value of B = 
3.0 + 0.1 A 2, suggesting both weak bonding and 
correspondingly rapid diffusion. Rodlike diffuse scat- 
tering paraUel to e* at ~z}.0, 22 ~ . 0  and their equivalent 
positions is observed and reveals the two-dimensional 
(2D) feature of the disordered state. From analyzing 
this 2D diffuse intensity by the method of Borie & 
Sparks [Acta Cryst. (1971), A27, 198-201], the planar 
short-range-order parameters were determined. A 
comparison of this planar short-range order with the 
2D Ornstein-Zernike correlation function demon- 
strates the long-range nature of the 2D short-range 
order with a correlation range x -1 of 4.88 +_ 0.4/k. 
Using a linearized mean-field approximation for the 
correlation functions of a binary Ising system well 
above T c developed by Clapp & Moss [Phys. Rev. 
(1966), 142, 418-427], a set of oscillatory atomic-pair 
interaction potential ratios was obtained where the 
direct interactions were significant out to at least four 
to five neighbors. 

I. Introduct ion  

Interest in intercalated transition-metal dichalco- 
genides, i.e. LixTiS 2 (Thompson, 1978; Dahn & 
Haering, 1981), AgxTiS 2 (Scholz & Frindt, 1980; Mori, 
Ohshima, Moss, Frindt, Plischke & Irwin, 1982), 
AgxTaS 2 (Scholz & Frindt, 1980), has increased 
recently due to their application as cathodes in 
high-energy density batteries and also due to their 
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quasi-two-dimensional (2D) properties. In particular, 
the structural investigation of intercalated silver atoms 
between layered TiS2 sandwiches for stage-2 AgxTiS z is 
amenable to straightforward measurement in air and at 
room temperature, which is well above the proposed 
ordering temperature of T c < 200 K. 

Scholz & Frindt (1980) studied the disordered 
stage-2 Ag0.20TiS z by an X-ray method. They deter- 
mined that the silver atoms prefer octahedral sites in 
the basal (ab) plane between every two TiS2 sandwich 
layers and that there is no change of the host-lattice 
stacking, i.e. the Ag atoms occupy positions in the 
sulfur van der Waals gap directly between Ti atoms, 
which are positioned vertically above and below. 

More detailed X-ray measurements were performed 
on the c-axis parameters in disordered stage-2 AgxTiS 2 
(x = 0.18 and 0.19) (Mori, Ohshima, Moss, Frindt, 
Plischke & Irwin, 1982). There it was found that the 
intercalation of silver ions between sulfur layers 
produces unequal T i -S  distances in the TiS2 layer. The 
charge transfer to the Ti layer induces an expanded 
Ti -S  distance adjacent to the Ag layer. The Ti--S 
distance away from the Ag ions is accordingly 
contracted as it presumably becomes more covalent. 

In the present paper, we report the result of X-ray 
measurements on the in-plane structure determination 
of silver atoms and on the planar pair-correlation or 
short-range-order (SRO) diffuse scattering from silver 
in disordered stage-2 Ag0.asTiS2 at room temperature. 

Generally speaking, the total diffuse scattering 
contains the above short-range-order component along 
with static and dynamic displacement terms. The 
method proposed by Boric & Sparks (1971) for 
separating this scattering into its individual com- 
ponents has had many successful applications for 
disordered binary alloy systems (e.g. Gragg & Cohen, 
1971; Ohshima, Watanabe & Harada, 1976). The 
present analysis is the first attempt to analyse 2D 
diffuse scattering intensity using the above separation 
method. It is an ideal case for the Boric-Sparks method 
both because of the 2D nature of the diffuse scattering 
and because one of the binary constituents is a vacancy 
and thus has zero scattering amplitude. 
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II. Procedures of experiment and analysis 

Two AgxTiS 2 single crystals were prepared electro- 
lytically by immersing TiS2 crystals in a 0.1 mol dm -3 
AgNO a solution with Ag metal as the anode (Unger, 
Reyes, Singh, Curzon, Irwin & Frindt, 1978). Mosaic 
spreads of these samples parallel to the e axis were 
about 2 ° . The size of sample 2, which was used to 
determine the structure factor in our previous work 
(Mori, Ohshima, Moss, Frindt, Plischke & Irwin, 
1982), was about 1.0 x 1.0 x 0.03 mm. The 
composition of the present sample was determined 
through an analysis of the 00.L Bragg intensities 
(where capital letters will be used to refer to Bragg 
peaks) by a least-squares fitting procedure and was 
determined to be x = 0.18. The a 0 and c o lattice 
parameters were 3.419 + 0.01 and 12.115 + 0.003 A, 
respectively. The size of our present sample, which was 
used to observe the diffuse scattering intensity, was 
about 4.0 x 5.0 x 0.006 mm. The composition of this 
sample, estimated from the co lattice parameter of 
12.115 + 0.003 A, was again x = 0.18. 

The X-ray measurements, utilizing both film and 
counter methods, were performed on a rotating-anode 
generator (RU-200) operated at maximum 50 kV and 
200 mA at room temperature in point-focus geometry. 
A vertically bent graphite monochromator focused at 
the counter slit was used to obtain the Mo Ka radiation 
(2=0 .7107  A). 

The fixed-crystal-fixed-film technique was used to 
obtain an X-ray photograph of disordered stage-2 
Ag0.1sTiS 2. An exposure time of about one day was 
required because of the sharp collimation and the thin 
sample. 

To measure quantitatively the X-ray scattered 
intensities of the sample, a two-circle (09--20) goniom- 
eter was used with manual X motion. The horizontal 
and vertical divergences of the beam were 0.5 and 
0.6 ° , respectively. The beam size at the counter slit 
was 0.8 x 1.2 mm. The M2 component from the 
monochromator was eliminated using a single-channel 

pulse-height analyzer together with a scintillation 
detector. A transmission method was used to measure 
H0. L and HH.  L Bragg reflections for sample 2 as well 
as the diffuse scattering on the (HK.O) plane and along 
the ( H K . L )  direction for our present sample, where H, 
K and L are integers. The stability of the incident beam 
was better than 4%. 

To convert the measured diffuse intensity into 
absolute units, direct beam power was determined by 
measuring and analyzing the 00.L Bragg reflections of 
our crystal (20 < L < 29), where the former reflection 
method was employed (Mori, Ohshima, Moss, Frindt, 
Plischke & Irwin, 1982). This incident power could 
thereby be estimated as (2.1 + 0.1) x 107 photons s -1. 
Air scattering and the counter noise were eliminated by 
measuring the intensity without the sample. The 

absorption parameter gt is sufficiently small for this 
sample (gt = 0.04) so that this method provides an 
effective correction. The fluorescent radiation from the 
sample was neglected in our analysis. The contribution 
from Compton scattering was also eliminated from the 
intensity data after the above conversion to absolute 
units, using the calculated values (Cromer & Mann, 
1967; Cromer, 1969). The dispersion correction for the 
silver atomic scattering factor (International Tables for  
X-ray Crystallography, 1974) and the usual trans- 
mission absorption correction were applied to the data. 
The diffuse intensity in the vicinity of Brillouin zone 
centers (Bragg peaks) was obtained by smooth extra- 
polation of the intensity in regions away from zone 
centers. 

We shall treat the present diffuse scattering, originat- 
ing from correlations among intercalated silver atoms 
in the basal (ab) plane, as purely 2D scattering, because 
the so-called 'correlation length' parallel to the c axis 
between silver-atom planes was very short (~2.4 A) in 
comparison with the nearest-neighbor silver-plane 
separation (~12 A) as described in the next section. 
The resulting 2D diffuse scattering can then be written 
as the sum of three terms (Bode & Sparks, 1971): 

I~= Io/[NXAg(1-  XAg)fA2g]-----I sRO + I sE + I T M ,  

(1) 
where I sR° is the scattering due to SRO, I s~ the 
size-effect-modulation term and frDs+n the contri- 
bution from thermal diffuse and Huang scattering 
which both peak at the zone centers. N, XAS and fAg are 
the number of atoms irradiated, the composition of 
silver atoms in silver layers and the scattering factor for 
t h e  silver atom (including an average or effective 
temperature factor), respectively. Each term in (1) is 
given as a series: 

I sR° = Y. ~ arm cos 2z~(hl l + h 2 m ) ,  (2) 
1 m 

I sE = --Y ~ (h~ y~ + h 2 Y~m) Sin Err(ha l + h 2 m), 
1 m 

(3) 

I T M  = Z Z (hl 6,~ + h~ ~¢m + hi h~ ~ )  
I m 

x cos 2z~(hl l + h2 m). (4) 

The integers l and m define a lattice site according to 
the relation 

rim = l a + rob, 

where a and b are translation vectors of the average 
(Ti) hexagonal cell, and h i and h 2 (and h 3, along c*) are 
the continuous coordinates in the hexagonal reciprocal 
space. 

arm is a 2D SRO parameter defined by 

a,m = 1 - pA~/(1  - XAg), (5) 
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where P ~  is the probability of finding a vacant atom 
(vI) at the end of a vector rim when the origin is 
occupied by a silver atom. Other Fourier coefficients 
are given by 

Yi~ = --2rr{[XAg/(1 -- XAg) + ~lra] ( X/Am gAg) } (6) 
x AgAg 2 ~lm=47~2{[XAg/(1 --XAg ) + (llm ] ( (Xlm ) )}  (7)  

~/m y = 8 ~ 2 { [ X A g / (  1 - - X A g )  + I~lm] \'~lm/'AgAg l~AgAg\ [ . r i m  / ,. (8)  

The quantity \'~lm/~'AgAg\/ describes the average dis- 
placement along the [10.0] axis between an Ag-Ag 
atom pair separated by the vector rim with similar 
definitions for the quantities \k"'lm/('~'AgAg~2\// and 
({vAgAg, ,AgAg3\  x x xy in (6) through (8) do ','~lm .'lm z/" Ylm, film and elm 
not contain the ratios of atomic scattering factors, 
fa / ( fa  - - f s )  and f s / ( fA  - f s ) ,  because one constituent 
atom of our sample is a vacancy. In the usual case of a 
disordered binary alloy, these ratios of atomic scatter- 
ing factors considerably complicate the analysis of the 
diffuse scattering (Tibbals, 1975). In this experiment, 
the diffuse intensity at about 2300 points in reciprocal 
space over the area of two full unit cells was measured, 
and the above-described method was employed to 
separate the observed intensity into its component 
features. 

III. Results  

1. Crystallographic parameters of  the basal (ab) plane 

Three series of HO.L and HH.L  Bragg reflections 
were measured and analyzed to determine both the 
temperature parameters of each atom parallel to the 
basal (ab) plane using the former procedure (Mori, 
Ohshima, Moss, Frindt, Plischke & Irwin, 1982) and 
also the average structure of the silver atoms in the 
intercalated plane, i.e. whether they are positioned at 
the octahedral sites. Detailed structure formulae are 
given in Appendix I. 

As shown in Fig. 1, the reliability factor R has a 
minimum value of about 0.065 at X = 1.0, where X is 
the fraction of the silver atoms occupying octahedral 
sites. From this calculation, it was determined that the 
silver atoms in the intercalated plane occupy the 
octahedral sites as proposed by Scholz & Frindt 
(1980). As shown in Table 1, the temperature param- 
eter of the silver atom, BAg = 3.0 A 2, has a particularly 
large value compared with that of the titanium and 
sulfur atoms with a root-mean-square displacement of 
the silver atom equal to 0.19 A. This clearly suggests 
that the vibration of the silver atom at the average 
lattice site in the intercalated plane is large and 
indicates both weak bonding and correspondingly rapid 
planar diffusion as well as possibly large static 
displacements of Ag from the average lattice sites as 
defined by the lattice parameter. The temperature 

parameters for pure TiS2 are compared in Table 1 
(Chianelli, Scanlon & Thompson, 1975). There are not 
large differences between Bri and B s in pure TiS2 or 
disordered stage-2 Ag0.18TiS2. The Ag vibration per- 
pendicular to the basal plane was also quite normal in 
disordered stage-2 Ag0.1sTiS 2 (Mori, Ohshima, Moss, 
Frindt, Plischke & Irwin, 1982). 

2. Diffuse scattering from silver atoms in the basal 
plane 

In § III.1, we determined both the temperature 
parameters and the average structure of the silver 
atoms in the basal plane. Based on these experimental 
results, we performed the following study of the diffuse 
scattering from disordered stage-2 Ag0.18TiS2 assuming 
it to be a disordered Ising-like lattice gas of approxi- 
mate planar concentration, XAg ~-- ~. 

Fig. 2 shows the monochromatic X-ray diffraction 
pattern of our present sample, taken with the fixed- 
crystal-fixed-film technique. The e* direction is per- 
pendicular to this figure. The Ewald sphere (1/2 = 
1.407 A -1) has barely been intersected at 20.1, 02.1 

Table 1. Temperature parameters of  constituent atoms 
in disordered stage-2 Ag0.18TiS 2 and pure TiS 2 parallel 

to the basal (ab) plane 

The temperature parameters for pure TiS 2 were determined by 
Chianelli, Scanlon & Thompson (1975). 

Bs (A ~) B.n (A 2 ) B,,,~ (A 2 ) 

Stage-2 Ag0.18TiS 2 1.08 (+0.13) 1.18 (+_0.14) 3.00 (+0.10) 
Pure TiS2 1.00 (+0.02) 0.76 (+0-02) - 

0.10 

0.05 

| I 

0 I I 
1.00 0.95 0-90 

X 

Fig. 1. R factor vs the fraction of the silver atoms occupying 
octahedral sites X. The R factor is given as R = Zi ]lFobs(i)l -- 
IFcale(i)ll/Y t IFobs(i)l. The structure factor Fcal¢(i) is assumed to 

= X)lFealc I ] where • ealc be IFcale(i)l [X-calc~'°ct 2 + (1 - tet 2 1/5, woct and 
Ft~c refer to the structure factors for the silver atoms in the 
octahedral sites and tetrahedral sites respectively. Both detailed 
formulae are in Appendix I. 
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and their equivalent Laue spots. At 10.0, 01.0, 11.0 
and the equivalent spots, the Ewald sphere was not 
crossed, but tails of these reflections can be observed 
because of a large mosaic spread and thermal diffuse 
scattering. Rodlike diffuse scattering parallel to e* at 
] ] .h  a, ]] .h 3 and their equivalent positions are observed, 
where h 3 assumes non-integer values along e*. 

These diffuse intensity distributions parallel to the e* 
= ~x.0 and ]].0, were direction and centered at h a 0, 22 

measured and are shown in Fig. 3 in arbitrary units. 
Both Figs. 2 and 3 verify our assignment of disordered 
lattice gas to this system. The insert shows the 
schematic intensity distribution for the (h~h2.ha) 
reciprocal plane. The so-called 'correlation length' was 
estimated from the inverse half-width at half-maximum. 
The average value, 2.38 A, is about ] of the silver-plane 
separation of 12-I 15 A, and verifies essentially the 2D 
feature of diffuse scattering from this sample. The fall 
off in Fig. 3 is thus due essentially to the form factor for 
a single layer of intercalated silver atoms. It is not, 
however, straightforward to convert this functional 
dependence directly into a planar c-axis electron 
density. Further work is in progress on this issue. 

Fig. 4(a) shows the total diffuse intensity distri- 
bution I~ observed on the (h~h2.0) reciprocal-lattice 
plane in absolute units, where the contributions from 
the Compton scattering and background have been 
subtracted as described in § II. The intensity distri- 
bution due to SRO diffuse scattering was separated 

from the total diffuse intensity in Fig. 4(a) using the 
separation method described in (1) through (4) and is 
shown in Fig. 4(b). This SRO diffuse scattering appears 
to have nearly cylindrical symmetry. By performing the 
Fourier inversion of I sR° [(2)], 2D SRO parameters, a t, 
were determined and are given in Table 2 where the 
suffix i denotes the shell number. The value of 0.973 
obtained for % is close to 1.0 as theoretically required 
although this may be a somewhat fortuitous result of 
background subtraction. Ratios of the deviation from 
the SRO parameters for the perfectly ordered structure 
(~t~), a t /a  °, were calculated to compare with the 2D 
Ornstein-Zernike correlation function (Fisher, 1962). 
In this calculation, we assumed that at low tempera- 
ture the V ~ × V/3 R30 ° 2D ordering of silver atoms in 
an intercalated plane will occur. For the stoichiometric 
composition, the values of ~t ° are -½ and 1 with 
dependence on i. The a ° parameters corresponding to 
the composition of the present sample are estimated to 

h, 

Diffuse intensity f l  itill  ll tl 0] 
(Arb. units) r " : r / g ~ q ~ r l ' _ ~ ,  0 / 

background 

5 4 3 2 I 0 1 2 3 4 5 6 7 

h 3 ~ ~ h 3 

Fig. 3. Diffuse intensity distribution parallel to the e* (or h3) 
direction centered on ]].0 and ]].0 in arbitrary units. The insert 
shows the schematic intensity distribution for the (h~h2.h3) 
reciprocal plane (the e* dependence). The flat tops of outer rods 
are due simply to truncation effects. 

Fig. 2. The monochromatic X-ray diffraction pattern of the present 
sample taken with the fixed-crystal-fixed-film technique. The e* 
direction is perpendicular to this photograph. The exposure time 
was about one day at 50 kV and 200 mA. 

01.0 11.0 

00.0 10.0 

Fig. 4. Intensity distribution in (h~ h2.0) plane of reciprocal space in 
absolute units. (a) Total diffuse intensity. (b) SRO component of 
the total diffuse scattering. 



be -0 .445  and 0-890 provided that the excess silver 
atoms distribute randomly over the vacant sites in the 
ordered plane and do not fill domain boundaries in a 
non-random fashion. The Ornstein-Zernike function 
for the 2D case is given as 

la(r)/a°(r)l = A  r - ~  1 + O , (9) 

where A is a normalization constant, r is the distance 
from the origin and 1/x is the correlation length. 
O(-1/xr), which refers to correction of order 1/xr, was 
neglected because the Ornstein-Zernike formula is 
asymptotic for large r in any case. Two adjustable 
parameters A and 1/x were determined using a 
least-squares-fitting procedure. As shown in Fig. 5, the 
smooth curve represents the asymptotic behavior 
expected for large r' and gives an excellent fit for 
r' >_ 2-7, where r' is equal to r/a o. The correlation 
length 1/x is 4-88 + 0.35 A. The long-range nature of 
the SRO is quite evident. It is also clear that the 
direction of the neglected correction of order (-1/xr)  
will improve the fit at smaller r '; the inclusion of a 

Table 2. Experimental values of the planar SRO 
parameters a i 

i a i i a t 

0 0.973 8 - 0 . 0 1 8  
1 --0.115 9 --0.011 
2 0.172 10 0.022 
3 - 0 . 0 7 4  11 - 0 . 0 0 7  
4 --0.051 12 0.008 
5 0.077 13 - 0 . 0 0 6  
6 0.052 14 -0.007 
7 - 0 . 0 2 3  15 0.007 

~ 0 .  

0-2 

1.0 

o e010 t 
\ 
\ 

c~ 

o,,,o 

"~°-,<>..~.o_. 

0 1 2 3 4 5 6 
r '  = r / a  0 

Fig. 5. The values la(r~)la°(r~)l vs the normalized interatomic 
distance r' = ri /a o. a°(r~) is the SRO parameter for the perfectly 
ordered V/3 x V/3 R30 ° structure. The smooth curve was 
calculated from the 2D Ornstein-Zernike correlation function 
using a least-squares-fitting method. It is difficult to estimate the 
actual error bars, but a(r 0 and a(r2) are particularly sensitive to 
background extrapolation under Bragg peaks and thermal 
correction. 

smaller temperature parameter for near neighbors than 
for distant neighbors (Walker & Keating, 1961) will, 
however, make the fit worse at small r! 

In a linearized mean-field approximation for the 
correlation function of a binary Ising system, developed 
by Clapp & Moss (1966), the SRO diffuse scattering 
intensity is expressed by 

isRo(k)= C/ {1 T c V(k)} 
T V(km) ' (10)  

where V(k) is a Fourier transform of the pair- 
interaction potential given as 

V(r) = ½{ vAgAg(r) + VEaZ(r) -- 2 vA~( r ) }  (11) 

between pairs of atoms separated by a vector r. The 
mark V1, as before, means a vacancy. V(km) is the 
minimum value of V(k) at k = kin, where km often 
corresponds to a superlattice point in the ordered 
reciprocal space. T c is the critical temperature and C is 
a normalization constant. This expression has been 
particularly successful well above T c in evaluating 
ratios of interaction energies (Moss & Clapp, 1968; 
Mozer, Keating & Moss, 1968). 

From (10), 2D atomic pair-interaction potential 
ratios were determined using a former procedure 
(Ohshima, Watanabe & Harada, 1976) and are shown 
in Fig. 6. To estimate the accuracy of the pair- 
interaction-potential ratios, the SRO parameters aTYn 
were synthesized and compared with a i. The reliability 
factor 

R= Z lat-alY"i/~, lati (12) 
I 0 0  1@0 

was estimated to be 0.]5, which is considered 
reasonable, as discussed in the next section. In this 
calculation, the normalized relation 

iatl= Y ia7 ynl 
1 ~ 0  1:~0 

was used. As shown in Fig. 6, the direct pair-interaction 
potential is long range and oscillatory. 

This pair potential was compared with the free- 
electron screening model for pair interactions between 

[3 
2 I",~ "=,7 

--1.0 
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= r r = r / a  o 

Fig. 6. Atomic-pair interaction ratio V(r~) /V(r~)  vs r' where V(r[) 
is given by (1 I) of the text. 
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atoms. According to Roth, Zeiger & Kaplan (1966) 
and Krivoglaz (1969), the ratio of the 2D pair- 
interaction potentials at large distances is given as 

sin(2kvaor t + ~o) 
V(r i ) /V(rO=A (13) 

r 2 

where kF is the Fermi wave vector, ~0 a phase factor and 
A a constant. The quantity kvao is related to the 
electron/atom ratio (e/a) and given as 1.55 (e/a) ~/z. In 
the present case, the e/a value was calculated to be 
0.36 from the composition based simply on the silver 
concentration, assuming the number of conduction 
electrons to be one for a silver atom. An attempt was 
made to fit (12) to the present result by adjusting two 
parameters A and ~0. However, it was not possible to 
find a screening curve which fits well all the potential 
values. Part of the disagreement may be ascribed to be 
a non-circular shape of the Fermi surface. In addition, 
it must be pointed out that the conduction electrons are 
contributed (donated) mainly to the Ti in the TiS2 
layers and therefore the screening problem is con- 
siderably more complicated than we have assumed. 
Nevertheless, it seems likely that the Fermi surface 
parameters of the quasi 2D Ag0.~sTiS z metallic system 
are crucial in the screening of the Ag intercalant and 
the determination of the Ag-Ag interaction. 

IV. Discussion 

1. Accuracy of  Fourier coefficients 

As pointed out by Gragg, Hayakawa & Cohen 
(1973), there are several sources of error that occur in 
obtaining Fourier coefficients from the total diffuse 
scattering. 

In our case, there is no problem about the variation 
of ratios of the atomic scattering factor with scattering 
angle as described in § II. There is, however, a difficulty 
in estimating the constant background near the 
Brillouin zone center. Various trials to obtain SRO 
parameters through changing the background were 
performed. We have concluded that only al and a 2 are 
influenced through this change, which, however, pro- 
duces a large possible error in R of (12). Therefore, it 
can be stated that the Ornstein-Zernike function 
estimated in § III.2 is essentially independent of the 
background level, which is not surprising because 
/sR°(k) is poorly determined in the wings but well 
determined in the vicinity of the superlattice positions. 

It is difficult to obtain other Fourier coefficients 7~, 
6f,~ and ~m y [(6) through (8)] because one can never 
completely eliminate the contribution from the funda- 
mental reflections near the Brillouin zone center 
without much better resolution. But we obtained rough 
values of 7~, with an error estimate of about 100%. As 

/ v AgAg'~ directly seen in (6), it is possible to recover \.n.lm / 
Fig. 7 shows the orientation direction of the average 
displacement of silver atoms when an origin is occupied 
by a silver atom. From this figure, we can deduce that 
the displacement of silver atoms which occupy the 
first-nearest-neighbor V/3 x V/3 R30 ° 2D ordered 
lattice points is expansive while the second-neighbor 
occupancy is contractive. It may qualitatively be said 
that these elastic displacements favor the V/3 x V/3 
R30 ° 2D ordering. Certainly Fig. 7 provides evidence 
for disordered-basal-plane expansion on intercalation 
(Scholz & Frindt, 1980; Mori, Ohshima, Moss, Frindt, 
Plischke & Irwin, 1982). 

2. Stability of the 2D ordered structure 

We can calculate the configurational energy for the 
ordered state, given as 

E =  2 X A  ~ . Z j { P A A ( r j ) - - X A }  V(r j )  , (14) 
J 

where XA is the composition of A atoms, Zj the j th 
coordination number, PAA(rj) a probability of finding 
A-A atomic pairs between the interatomic distance rj 
and V(rj) the pair-interaction-potential energy given as 
(11). 

If V/3 x V/3 R30 ° 2D ordering of silver atoms in an 
intercalated plane occurs, E is expressed as 

E=--~V(r l ) {1  + V(ra)/V(rl)+ 2V(r,)/V(rl)} (15) 

up to the fifth-nearest neighbor at the stoichiometric 
composition. But, the composition of the present 
sample is not exactly stoichiometric and (15) must be 
slightly modified. The modified relation is given as the 
following equation 

E = - 1.322 V(rl) { 1 - 0.004 V(r2)/V(rl) 

+ V(r3)/V(r~)+ 2V(r4)/V(r~) 

-- 0.004 V(rs)/V(r~)}. (16) 

Introducing our experimental data into (16), we find 
E ~ -2.6V(r~). As it is thought that the sign of V(r~) 
must physically be positive, E has a negative sign. 

0 1 23 4 5 67 8 910 
i ~ , v  , ' r  ,. T' , , ~  

/ I I I I I~  I I 
/ / /  I I  / , ,  i~ 

_ .< ~,'/' /./ /~. I 1.4 
/ s  i / / / i I i t I I 

. .  i S i i i i I i I I 

~'-::__t_----<" ,x',,,' 7;,"//'; 
/ . . . .  . / / /  / / 

/ - .  

/ " - L ' F  . . . .  - r - ' . >  -~< ," 4 '  

/ -.Z£2-g2_.c.£S2_32552~'..." 

Fig. 7. Or ien ta t ion  di rec t ion o f  the a v e r a g e  d i sp l acemen t  o f  silver 
a t o m s  when  an origin site, 0, is occup ied  b y  a silver a tom.  1, 2, 
3 . . . .  refer  to  the coord ina t ion-she l l  n u m b e r s .  
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Clearly the stability region of the ordered phase is ob- 
served for our data. No detailed structure analysis of the 
ordered phase has been done to date. It is felt that the 
actual ordered structure may be more complicated than 
the idealized V/3 x ~ R30 ° 2D ordering of silver 
atoms in an intercalated plane, especially as three- 
dimensional effects intervene and the aforementioned 
domain pinning seems to persist. By this we mean that, 
as Suter, Shafer, Horn & Dimon (1982) have also 
indicated in stage-1 crystals, it is quite difficult to affect 
ordering, in the sense of sharp superlattice peaks, on 
cooling a non-stoichiometric crystal. Those authors 
find, however, that as stoichiometry is approached the 
superlattice peaks sharpen, i.e. the residual broadening 
is not a kinetic effect due to sluggish diffusion. 

V. Summary and conclusion 

In summary, the present X-ray study of disordered 
stage-2 Ag 0. IsTiS2 shows that: 

(a) the silver atoms in the intercalated plane occupy 
the octahedral sites and the in-plane temperature 
parameter of the silver atoms has a large value 
indicating both weak bonding and correspondingly 
rapid diffusion along with possible static effects; 

(b) rodlike diffuse scattering parallel to c*, observed 
a t  11 2 2  ~.0 ,  ~ . 0  and their equivalent positions shows a 2D 
feature, suggesting that a disordered 2D lattice gas is 
appropriate to this system; 

(c) the 2D Ornstein-Zernike correlation function 
can be fitted to the planar short-range-order parameters 
evaluated experimentally using the Boric-Sparks 
method; and 

(d) the long-range oscillating 2D atomic-pair inter- 
action potential ratios were obtained based on a 
linearized mean-field approximation for the correlation 
functions. 
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APPENDIX I 

The structure factors of disordered stage-2 AgxTiS 2 
when the silver atoms occupy the octahedral or 
tetrahedral sites are given as 

Fc°act¢ = 2 ( -  1)Z(XfAg + fTl COS 2nzL 

+ fS(--1)H+X{COS 2n[~(H-- K ) -  (z --Y2) L] 

+ cos 2 n [ ~ ( H - g )  + (z + yl)L]}) (A1) 

and 

Fe tet 2(--1)L(XfAg{COS 27t(H/3 + ~g) ale 

2 + i sin 2n(H/3 + ~K)/ +frl  cos 2nzL 

+ fS(--1)H+K{COS 2n[~(H-- K)-- (z--Y2)L] 

+ cos 2n [~ (H-  K) + (z + yl)L]}). (A2) 

H, K and L are the Miller indices. Distance parameters 
z, Yl and Y2 have the same meaning as in our previous 
paper (Mori, Ohshima, Moss, Frindt, Plischke & Irwin, 
1982). fAg, fTi, and fs are the scattering amplitudes, 
including thermal effects, of Ag, Ti and S atoms, x is 
the atom fraction of Ag. The atomic scattering factor of 
atom n, fn, is expressed as 

f,, = fo  exp{-B.(sin 0/2)2}, (A3) 

where fo  is the tabulated scattering factor of atom n 
(including dispersion) and B. = 8n2(u2).. (u2). is the 
mean-square atomic displacement and is equal to 

2 c o s  2 (uao). sin 2 ~ + 6. (u20). and (u~). are the 
mean-square components parallel and perpendicular to 
the basal (ab) plane and ~ is the angle between the 
diffraction vector and the c axis. 

To check whether the silver atoms in the inter- 
calated plane are positioned at the octahedral or 
tetrahedral sites, the structure factor Fcalc(i) is assumed 
as 

[XlFea~cl + (1 (A4) iFcalc(i)l = oct 2 __ X)lFcalctet 1211/2, 

where X is the fraction of the silver atoms occupying 
octahedral sites. 

We have already determined both the distance 
parameters z, Yl and Y2 and the temperature param- 
eters of Ag, Ti and S atoms parallel to the c axis, given 
in Table 1 in our previous paper (Mori, Ohshima, 
Moss, Frindt, Plischke & Irwin, 1982). Those values 
were used in calculating the structure factor Fcalc(i ). 
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Abstract 

The extinction factor r/was numerically calculated for 
spherical crystals based on the new statistical 
dynamical theory [Kato (1976). Acta Cryst. A32, 
458-466]. The optical paths in the Bragg case and 
other geometrical cases such as the Laue-Bragg-Laue 
are properly treated, so that the accuracy is estimated 
to be 0.1% for/~0 R < 3.0, oR < 2.0 and O n < 30 ° (#0 
absorption coefficient, tr the coupling constant of the 
energy transfer equations, O n the Bragg angle). Based 
on these calculations a universal fitting function r/(#0 R, 
trR, 8n) is proposed in the above-mentioned domains. 
The accuracy is better than 0.4% if r/is larger than 
10%. The difference between the present and the 
conventional theories is significant if the extinction 
exceeds 20%. 

In the present calculation, the correction is made 
approximately by using the rigorous solutions avail- 
able for trapezoidal crystals. Not only the numerical 
values for a discrete set of parameters/uoR, oR and On, 
but also an analytical fitting function will be presented. 
Here, R is the radius of the crystal and tr is the coupling 
constant of the basic energy transfer equations./a 0 and 
O n are the normal absorption coefficient and the Bragg 
angle, respectively. So far, to our knowledge, no such 
universal function has been presented. 

The second aim is to illustrate the numerical 
difference between the conventional and present 
theories. Again, so far, it has been demonstrated only 
for parallel-sided crystals (Kato, 1982). Then, a 
significant discrepancy of more than 10% was noticed 
when the extinction factor was less than about 25%. A 
similar result is obtained here for spherical crystals. 

1. Introduction 

One of the authors has proposed a new theory on 
secondary extinction (Kato, 1976, 1979, 1980, 1982). 
The present paper is written for two purposes. The first 
is to calculate numerically the extinction factor for 
spherical crystals, which are often used for accurate 
determination of crystal structures. So far, the cal- 
culation has been made only for parallel-sided crystals 
(Kato, 1980), for simplicity. For finite crystals like a 
cylinder and a sphere, the application of the simplest 
solution of the energy transfer equations in the Laue 
cases is insufficient to obtain the diffracted intensity 
for the whole crystal, because the optical paths in the 
Bragg cases and other geometrical cases are involved. 

2. The theoretical basis 

In order to obtain the fundamental equation to describe 
secondary extinction the following energy transfer 
equations (ETE) are assumed (Kato, 1976). 

- - -  -#eI0 + trig (la) 
OSo 

~s~ 
----/Heir + trl o, (lb) 

where I 0 and I~ are the total intensities carried by the 
direct (O) and Bragg-reflected (G) beams. They 
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